Extremal problems for convex polygons
نویسندگان
چکیده
Consider a convex polygon Vn with n sides, perimeter Pn, diameter Dn, area An, sum of distances between vertices Sn and widthWn. Minimizing or maximizing any of these quantities while fixing another defines ten pairs of extremal polygon problems (one of which usually has a trivial solution or no solution at all). We survey research on these problems, which uses geometrical reasoning increasingly complemented by global optimization methods. Numerous open problems are mentioned, as well as series of test problems for global optimization and nonlinear programming codes.
منابع مشابه
Enumerating isodiametric and isoperimetric polygons
For a positive integer n that is not a power of 2, precisely the same family of convex polygons with n sides is optimal in three different geometric problems. These polygons have maximal perimeter relative to their diameter, maximal width relative to their diameter, and maximal width relative to their perimeter. We study the number of different convex n-gons E(n) that are extremal in these thre...
متن کاملA Variational Method for Hyperbolically Convex Functions
In this paper we recall our variational method, based on Julia’s formula for the Hadamard variation, for hyperbolically convex polygons. We use this variational method to prove a general theorem for solving extremal problems for hyperbolically convex functions. Special cases of this theorem provide independent proofs for controlling growth and distortion for hyperbolically convex functions.
متن کاملPolynomial interpolation and cubature over polygons
We have implemented a Matlab code to compute Discrete Extremal Sets (of Fekete and Leja type) on convex or concave polygons, together with the corresponding interpolatory cubature formulas. The method works by QR and LU factorizations of rectangular Vandermonde matrices on Weakly Admissible Meshes (WAMs) of polygons, constructed by polygon quadrangulation. 2000 AMS subject classification: 65D05...
متن کاملOptimal Algorithms for Stabbing Polygons by Monotone Chains
In this paper we present optimal algorithms to compute monotone stabbers for convex polygons. More precisely, given a set of m convex polygons with n vertices in total we want to stab the polygons with an x-monotone polygonal chain such that each polygon is entered at its leftmost point and departed at its rightmost point. Since such a stabber does not exist in general, we study two related pro...
متن کاملSolving Geometric Problems with the Rotating Calipers *
Shamos [1] recently showed that the diameter of a convex n-sided polygon could be computed in O(n) time using a very elegant and simple procedure which resembles rotating a set of calipers around the polygon once. In this paper we show that this simple idea can be generalized in two ways: several sets of calipers can be used simultaneously on one convex polygon, or one set of calipers can be us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 38 شماره
صفحات -
تاریخ انتشار 2007